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ABSTRACT
Accurate large-scale first principles calculations based on density
functional theory (DFT) in metallic systems are prohibitively expen-
sive due to the asymptotic cubic scaling computational complexity
with number of electrons. Using algorithmic advances in employ-
ing finite-element discretization for DFT (DFT-FE) in conjunction
with efficient computational methodologies and mixed precision
strategies, we delay the onset of this cubic scaling by significantly
reducing the computational prefactor while increasing the arith-
metic intensity and lowering the data movement costs. This has
enabled fast, accurate and massively parallel DFT calculations on
large-scale metallic systems on both many-core and heterogeneous
architectures, with time-to-solution being an order of magnitude
faster than state-of-the-art plane-wave DFT codes. We demonstrate
an unprecedented sustained performance of 46 PFLOPS (27.8% peak
FP64 performance) on a dislocation system in Magnesium con-
taining 105,080 electrons using 3,800 GPU nodes of Summit super-
computer, which is the highest performance to-date among DFT
codes.

CCS CONCEPTS
• Computing methodologies → Quantum mechanic simula-
tion; Massively parallel and high-performance simulations.
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1 JUSTIFICATION FOR ACM GORDON BELL
PRIZE

Our spectral finite-element based DFT code with FP32-FP64 com-
puting demonstrates 46 PFLOPS (27.8% FP64 peak) sustained perfor-
mance on OLCF’s1 Summit, which is 14.9× higher than the current
DFT record2 [1]. We demonstrate strong scaling speedup of 14.5×
– 26.8× on ALCF’s3 Theta, with time-to-solution 9× faster than
state-of-the-art codes.

2 PERFORMANCE ATTRIBUTES

Category of peak performance,
achievement scalability, time-to-solution

Type of method used N/A
Results reported on the whole application

basis of including I/O
Precision reported mixed precision

System scale results measured on full-scale system
Measurement mechanism timers and FLOP count

1Oak Ridge Leadership Computing Facility
2The current DFT record is 3.08 DP-PFLOPS, achieved on the K supercomputer [1];
Gordon Bell prize (2011).
3Argonne Leadership Computing Facility

https://doi.org/10.1145/3295500.3357157
https://doi.org/10.1145/3295500.3357157
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3 OVERVIEW: ACCURATE DFT
CALCULATIONS IN METALLIC SYSTEMS

First principles calculations, based on quantum mechanics, have
been immensely successful in predicting a wide variety of materials
properties. In particular, Kohn-Sham density functional theory cal-
culations (DFT) have provided numerous key insights into materials
behavior (mechanical, chemical, electronic & optical properties),
and consume a substantial fraction of world’s computational re-
sources today. The Kohn-Sham approach to DFT [2] reduces the
exponential computational complexity (in number of electrons) of
solving the many-electron Schrödinger equation (SE) to cubic com-
putational complexity, and this important advance was awarded
the Nobel Prize in Chemistry in 1998 [3]. This advance was ac-
complished by reducing the SE to an equivalent problem of non-
interacting single electrons in an effective mean field governed by
the electron-density—the probability density of finding an electron
at a spatial point x. Mathematically, the computation of ground-
state electronic structure in Kohn-Sham DFT [4] involves a self
consistent field (SCF) iteration solving the following non-linear
eigenvalue problem (Kohn-Sham equations):(

−
1
2
∇2 +Veff(ρ)

)
ψi = ϵiψi , ρ(x) =

∑
i
2fi (ϵi )|ψi (x)|2 .

In the above, {ψi } and {ϵi } are the single-electron Kohn-Sham
orbitals (wavefunctions) and corresponding energy levels, respec-
tively;Veff is the effective single-electron potential; ρ is the electron-
density; fi denotes the orbital occupancy of the ith state, which
is evaluated as a function of ϵi (typically, using the Fermi-Dirac
distribution). As DFT is concerned with evaluating the ground-
state properties, fi = 0 for the unoccupied states, and, thus, the
solution to the above equation entails solving the eigenvalue prob-
lem corresponding to the lowest N states (corresponding to non-
trivial orbital occupancy). The resulting computational complexity
is cubic-scaling with number of electrons (Ne ).

The stringent accuracy requirements in DFT (∼ O(10−5) rel-
ative error in energy) needed to compute meaningful materials
properties, in conjunction with the cubic-scaling computational
complexity, demand significant computational resources for accu-
rate DFT calculations, and, thus, routinely limit materials systems
to at most a few thousands of electrons. Numerous efforts have
been undertaken over the past two decades to tackle this challenge,
which can broadly be categorized into: (i) reduced-order scaling
techniques [5–8]; (ii) reduced-order basis techniques [9, 10]. The
former relies on avoiding the direct computation of Kohn-Sham
wavefunctions, and designing algorithms to directly compute the
electron-density. While this has been successful in reducing the
computational complexity to be close to linear scaling for materi-
als systems that have a band-gap, these techniques are either not
applicable, or are not robust and accurate for metallic systems. On
the other hand, approaches relying on the use of a reduced-order
basis, while efficient, do not offer systematic convergence and the
desired accuracy, especially for metallic systems. Thus, despite sig-
nificant method development efforts into alternate approaches, the
conventional approach of solving the Kohn-Sham equations with
a plane-wave discretization [11–13], despite all its limitations, has
remained the method of choice for metallic systems.

In this work, we report a significant advance in the state-of-
the-art for accurate DFT calculations in metallic systems via the
development of DFT-FE [14], which is a result of algorithmic ad-
vances combined with implementation innovations, that has en-
abled fast, scalable and accurate large-scale DFT calculations on
metallic systems as large as 100,000 electrons. This has been made
possible by: (i) the development of efficient and accurate spatially
adaptive discretization strategies using higher-order finite-element
discretization; (ii) developing efficient and scalable algorithms in
conjunction with mixed-precision strategies for the solution of
Kohn-Sham equations; (iii) implementation innovations, both on
many-core and hybrid architectures, that significantly reduce the
data movement costs and increase arithmetic intensity. As will be
demonstrated, these developments have resulted in DFT-FE provid-
ing a time-to-solution that is 9× faster than the state-of-the-art for
large-scale metallic systems at similar accuracy, and a sustained
performance of 46 PFLOPS that is 14.9× greater than that of any
previously reported DFT code.

The reported advance in this work has wide ranging implications
on a number of fields, including applied physics, chemistry, materi-
als science, and metallurgy. There are many critical scientific and
technological problems that can be tackled by availing the predic-
tive capability of DFT calculations for large-scale metallic systems,
made possible by DFT-FE. These include, to name a few: (i) studying
catalytic properties of nanoparticles [15], whose sizes are beyond
those that are currently accessible, to accelerate research in cataly-
sis; (ii) designing efficient solid-state electrolytes with high ionic
conductivity and interfacial stability [16], which require large-scale
and long time-scale molecular dynamics (MD) simulations; (iii) pre-
dicting the properties of high entropy alloys [17] to develop next
generation materials with unprecedented properties; (iv) design
of light-weight structural alloys [18]. In this submission, we focus
on demonstrating the critical capability advance made possible by
DFT-FE that has the potential to provide a breakthrough in the de-
sign of light-weight structural alloys. It is expected that every 10%
reduction in the weight of a vehicle will result in a 6-8% increase in
the fuel efficiency, which has significant implications to economic
savings and reducing the carbon footprint. Magnesium (Mg) be-
ing the lightest structural metal is an ideal candidate [19], but a
technological solution has thus far been elusive due to the lack of
ductility of Mg (needed to form parts). Dislocations are line defects,
whose energetics control the ductility in a crystalline material. In
particular, in Mg, the energetics and stability of a particular type of
dislocation, namely the pyramidal dislocation, has been identified
as critical to improving ductility in Mg [18, 20]. Understanding its
energetics require highly accurate DFT calculations on large-scale
systems involving many thousands of atoms, which have been
out of reach thus far. We demonstrate here that DFT-FE is capable
of tackling this outstanding challenge by demonstrating calcula-
tions on pyramidal dislocations in Mg, with system-sizes reaching
∼10,000 atoms (∼100,000 electrons) with the desired high-accuracy.

4 CURRENT STATE OF THE ART
Given the large importance of DFT calculations, numerous efforts
have been undertaken over the past three decades to develop ac-
curate and computationally efficient approaches for solving the
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Kohn-Sham DFT problem. These include efficient discretization
schemes for the Kohn-Sham problem, development of efficient and
reduced-order scaling algorithms for solving the Kohn-Sham equa-
tions, as well as efforts to improve the parallel scalability of the
developed codes. Among the discretization schemes, the plane-
wave (PW) basis remains to date the method of choice, especially
for metallic systems, due to the systematic convergence and com-
putational efficiency afforded by the spectral convergence of the
PW basis. This has resulted in the wide adoption of the codes such
as VASP [13] (commercial) and QUANTUM ESPRESSO [12] (QE) (open
source) by the electronic structure community. Despite the popu-
larity of the PW based DFT codes, the limitations of a Fourier space
discretization are widely known—limited scalability on parallel
computing architectures, and inefficiency in treating non-periodic
systems. Significant efforts have been undertaken to improve the
parallel scalability of PW based codes, such as the development
of QBox [21] for ab initio MD simulations, which was employed
by the Gordon Bell prize winning team in 2006. As will be demon-
strated in this paper, despite the decades long effort into developing
scalable and efficient PW based DFT codes, DFT-FE significantly
outperforms both QBox and QE (state-of-the-art PW codes) by 5×
in time-to-solution on a medium-sized benchmark metallic system
containing 8,630 electrons, solved to a similar accuracy level. Fur-
thermore, DFT-FE has been demonstrated to outperform QE up to
16×, even on periodic systems where PW discretization is most
efficient, for systems containing ∼30,000 electrons [14].

In order to tackle some of the limitations of the PW basis, numer-
ous real-space techniques have been developed, of which reduced
order basis functions constructed fromGaussian type orbitals [9, 10]
have been the most popular. Notably, the CP2K [9] package is a mas-
sively parallel DFT code that uses such a reduced order basis. The
Gordon Bell finalists in 2015 [22] used the Kohn-Sham Hamiltonian
computed from CP2K to conduct an ab initio quantum transport
calculation which demonstrated a sustained performance of 15
DP-PFLOPS. However, we note that quantum transport calcula-
tion is embarrassingly parallel owing to its formulation, unlike
ground-state DFT or ab initio MD simulations. Further, while such
reduced-order basis sets can provide computational efficiency, they
lack systematic convergence for generic materials systems, and,
hence, are not suitable for accurate DFT calculations involving
metallic systems.

The lack of systematic convergence using Gaussian type orbitals
has led to recent efforts in developing systematically improvable,
efficient and scalable real-space DFT techniques based on finite-
difference [23, 24] and finite-element discretization [25, 26]. The
2011 Gordon Bell prize winning team [1] used a finite-difference
technique to perform DFT calculations on a semi-conducting sys-
tem achieving a sustained performance of 3.08 DP-PFLOPS on the
K supercomputer, a previous generation machine, which consti-
tutes the current DFT sustained performance record. However, the
simulations demonstrated were not commensurate with chemical
accuracy. Moreover, as will be demonstrated in this paper, DFT-FE
attained sustained performance of 46 PFLOPS, 14.9× higher than
[1]. The 2016 Gordon Bell prize finalist [27] also employed finite-
difference discretization in conjunction with a linear scaling tech-
nique to conduct large-scale first principles molecular dynamics
simulations. However, this linear scaling technique is only suited

for materials systems with a band-gap, and thus is not applicable for
metallic systems. Reduced order scaling DFT calculations on metal-
lic systems at chemical accuracy have recently been demonstrated
using the ONETEP code [28], employing psinc basis functions and a
Fermi-operator expansion type approach [29]. We note that such an
approach has a very high computational prefactor for metallic sys-
tems. Furthermore, parallel scalability has not been demonstrated,
thereby resulting in a large time to solution—up to 3 hours per SCF
iteration on system sizes involving ∼100,000 electrons. In compari-
son, as will be demonstrated, DFT-FE has achieved a per SCF time
of 2.4 minutes for similar system sizes.

Overall, the current state-of-the-art DFT methods for large-scale
metallic systems are either limited by scalability, accuracy, or by
the computational efficiency they afford. Thus, DFT calculations
on metallic systems have been severely limited, and is the key bot-
tleneck in tackling many scientific and technologically important
questions across a range of fields. The development of DFT-FE that
combines various strategies, algorithmic advances and implemen-
tation innovations, as discussed subsequently in Sec. 5, provides
an important advance for fast and accurate large-scale DFT calcu-
lations on metallic systems, and a tool to tackle a range of open
questions that have not been possible heretofore.

5 INNOVATIONS REALIZED
We employ the finite-element (FE) discretization of the Kohn-Sham
equations to avail the systematic convergence afforded by FE basis,
and to exploit its significant parallel scaling advantage in compari-
son to widely used basis sets like plane-waves (PW). In particular,
FE basis is localized with a compact support on the FE cells con-
taining/sharing a FE node. Thus, only the FE nodes on processor
boundaries need to be communicated, which has a significantly
smaller communication cost in comparison to the all-to-all commu-
nication required in global basis sets like PW.

5.1 Algorithmic advances in using
finite-elements for DFT

Two major challenges prevented the FE basis from being widely
adopted in ab initio calculations: (i) naively implemented FE dis-
cretization has a significant degrees of freedom (DoFs)4 disadvan-
tage, in comparison to PW, at chemical accuracy; (ii) FE discretiza-
tion results in a generalizedHermitian eigenvalue problem (GHEP)5,
HΨ̂i = ϵ

h
i MΨ̂i , which is more challenging to solve in comparison

to a standard Hermitian eigenvalue problem (SHEP). We overcame
the first challenge by employing an error-analysis informed adaptive
higher-order FE discretization (polynomial order ≥ 4) [14] that sig-
nificantly reduced the DoFs needed to achieve chemical accuracy.
In particular, the spatial adaptivity is realized via an a priori mesh
adaption scheme (cf. Fig. 1), which guides the mesh refinement
based on a local FE cell error indicator obtained from the error
analysis of the Kohn-Sham problem [14]. In DFT-FE, the adaptive
mesh generation infrastructure is based on the p4est library [30]

4DoFs denotes # basis functions.
5H andM denote the discrete sparse Hamiltonian and overlap matrices of sizeM ×M ,
where M denotes # FE basis. Ψ̂i denotes the discrete vector corresponding to the i th
wavefunction.
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Figure 1: Adaptive finite-element mesh with refinement around
atomic positions for a periodic HCP Mg supercell with a vacancy at
the corner of the simulation domain.

via the deal.II finite-element library [31]. We overcame the sec-
ond challenge by employing spectral finite-elements with nodal
points coincident with Gauss-Lobatto-Legendre (GLL) points [26],
which in conjunction with GLL quadrature for numerical integra-
tion6 renders M diagonal. Thus, we can trivially transform the
GHEP to SHEP, given by: ˜HΨ̃i = ϵ

h
i Ψ̃i , where Ψ̃i = M1/2Ψ̂i and

˜H = M−1/2HM−1/2.
The resulting discrete Kohn-Sham nonlinear eigenvalue problem

is solved using a self consistent field (SCF) iteration (cf. Algorithm 1)
by employing the Chebyshev filtered subspace iteration procedure
(ChFSI) [26, 32] in each SCF iteration. The most dominant computa-
tional step here is ChFSI, which entails constructing a subspace that
is rich in the eigenspace of the occupied single-electron states and
solving the SHEP in this subspace. ChFSI has been demonstrated to
be more computationally efficient (10× – 20×) [26] and scalable in
comparison to traditional approaches computing eigenpairs explic-
itly. The ChFSI procedure implemented in DFT-FE (cf. Algorithm 2)
involves the following three steps: Chebyshev filtering (CF), or-
thonormalization (CholGS), and the Rayleigh-Ritz procedure (RR).
Below we discuss the innovations focused on improving arithmetic
intensity and reducing data movement costs of CF, CholGS and RR
steps.

Algorithm 1 Self Consistent Field (SCF) iteration in DFT-FE

M : # FE basis; N : # eigenstates; (.)h : FE discretized field

1: Start with an initial guess for input electron-density ρhin(x), and an
initial guess for ˜Ψ.

2: [EP] Get effective potential,V h
eff (ρ

h
in(x), R), by solving a discrete Poisson

equation (O(M log(M ))). Compute FE cell level Hamiltonian matrices
of H̃.

3: Perform ChFSI procedure: [˜Ψ
R
, D] = ChFSI

(
˜Ψ, H̃

)
(call Algorithm 2).

4: [DC] Compute new output electron density, ρhout(x), using ˜Ψ
R
and D.

(O(MN ))

5: If
ρhout(x) − ρhin(x)

 ≤ tolerance, stop; Else, compute new ρhin(x) using
a mixing scheme, and go to step 2.

6Accuracy and sufficiency of GLL quadrature onM is established in [26].

Algorithm 2 ChFSI procedure: [˜Ψ
R
,D] = ChFSI

(
˜Ψ, ˜H

)
˜Ψ is a M × N matrix

1: [CF] Chebyshev polynomial filtering of ˜Ψ (cf. Sec. 5.3). (O(MN ))

2: [CholGS] Orthonormalize the Chebyshev filtered basis ˜Ψ:

a: [CholGS-S] Compute overlap matrix, S = ˜Ψ
†
˜Ψ. (O(MN 2))

b: [CholGS-CI] Perform Cholesky factorization of the overlap matrix,
S = LL†, and compute L−1. (O(N 3))

c: [CholGS-O] Construct orthonormal basis: ˜Ψ
o
=˜ΨL−1†. (O(MN 2))

3: [RR] Perform the Rayleigh-Ritz procedure:

a: [RR-P] Compute projected Hamiltonian: Ĥ = ˜Ψ
o†
H̃˜Ψ

o
. (O(MN 2))

b: [RR-D] Diagonalization of Ĥ: ĤQ = QD. (O(N 3))

c: [RR-SR] Subspace rotation step: ˜Ψ
R
= ˜Ψ

o
Q. (O(MN 2))

5.2 General GPU acceleration strategy
To achieve maximum performance on GPUs, we have ported all
computationally intensive steps in the ChFSI procedure to GPUs.
Further, the algorithm is implemented such that we minimize CPU-
GPU data transfers7, which can be a rate limiting step relative
to the high arithmetic performance on the GPU. In ChFSI proce-
dure, the operations corresponding to CF, CholGS-S, CholGS-O,
RR-P and RR-SR are ported to GPUs using CUDA kernels, and
cuBLAS library for the xGEMM operations. The CholGS-CI and RR-D
steps are performed on CPUs in parallel on a subset of the MPI
ranks using the ELPA library [33]. These operations could not be
performed on GPUs as the O(N 2) memory of the overlap (S) and
projected Hamiltonian (Ĥ) matrices would be too large to store in
serial8 on a single GPU for very large scale problems considered
in this work (N ∼ 60, 000). Further, these operations performed on
CPUs do not constitute a bottleneck, even at large system sizes9.
The aforementioned memory overflow issue is also present in the
compute intensive CholGS-S, CholGS-O, RR-P RR-SR steps, but we
circumvent them by using a blocked approach [14]. To elaborate the
blocked approach in the context of CholGS-S, the sub-matrices of S,
corresponding to a block of wavefunctions, are computed one at a
time by assembling the local contributions computed on the GPUs,
and subsequently copied to the ELPA parallelized S on the CPUs.
An important aspect of our implementation is that, by porting the
aforementioned steps in ChFSI procedure to GPUs in conjunction
with GPU porting of the electron-density computation (DC), we
completely eliminate the otherwise required large data transfer of
˜Ψ between CPU and GPU during the SCF procedure.

5.3 Reduction of memory access &
communication costs in CF

Chebyshev polynomial filtering procedure (CF) constitutes the ac-
tion of a degreem (typically 30-50) Chebyshev polynomial filter on

7Denotes data transfer in both directions.
8Currently there is no GPU alternative to ScaLAPACK, but upcoming libraries like
SLATE (https://icl.utk.edu/slate/) will address this gap.
9As reported in Table 4, these operations constitute 10.3% of the SCF wall-time for a
61,640 electrons system.
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˜Ψ, computed using a recursive iteration which involvesm H̃X eval-
uations. Each H̃X evaluation is performed using a blocked approach
to reduce peak memory. To this end, blocks of Bf wavefunction
vectors, denoted by Xb, are filtered sequentially. We significantly
reduce the memory access costs in the core computational kernel
H̃Xb by employing FE cell level dense matrix operations as shown
in Fig. 2, instead of global sparse matrix approaches. In particular,
we recast the Yb = H̃Xb kernel as

Yb = ASEMB
{
H̃ciXci

b

}
, (1)

where ci denotes the ith FE cell, H̃ci and Xci
b are matrices with sizes

Mcell × Mcell and Mcell × Bf respectively, with Mcell
10 denoting

the number of DoFs in a FE cell. ASEMB denotes the assembly
operation of vector contributions from all FE cells. The above FE cell
level matrix operations involving many small dense matrix-matrix
multiplications are performed simultaneously for all cells on GPUs
using cuBLAS’s xGEMMStridedBatched routine. Furthermore, as
shown in Fig. 2, we structure the memory layout of Xb to ensure
coalesced memory access across GPU threads, thereby significantly
reducing memory access costs in extracting Xci

b from Xb and in the
assembly operation into Yb.

We minimize communication latencies and overheads in H̃Xb by
exploiting the fact that all wavefunction vectors have identical MPI
point-to-point communication pattern across the FE domain decom-
position partition boundaries. This allows us to perform the MPI
communication for all wavefunction vectors in Xb simultaneously,
which incurs minimal network latency compared to communicat-
ing the wavefunction vectors one by one. The above optimization
further benefits from the memory layout of Xb (see Fig. 2) when
copying the wavefunctions data to and from the MPI buffer. Fur-
thermore, we use FP32 for this MPI communication and it has been
observed to retain FP64 accuracy in ground-state solutions while
reducing the communication cost by a factor of 2. However, we
still observed significant overheads on GPUs resulting from invok-
ing independent CUDA kernel launches11 needed for copying the
wavefunctions data of each DoF on the FE partition boundary to
and from the MPI buffer. We overcame this bottleneck by caching
the FE partition boundary DoF indices in an array at the begin-
ning of the program, and, subsequently, during the communication
steps in H̃Xb, we are able to handle all the boundary DoF indices
simultaneously inside the CUDA kernel using the cached index
array.

These implementation innovations lead to a high overall through-
put for CF, as demonstrated in Fig. 3. Notably, we achieved 20.5% of
the FP64 peak using block size12 Bf = 200 on a single Tesla V100
GPU of Summit. We note that efforts to efficiently port the H̃X ker-
nel to GPUs have been attempted in the context of finite-difference
(FD) discretization [34]. However, a much lower throughput of 7.6%
of FP64 peak was realized using a single Tesla K20X GPU. The

10We employ a polynomial degree of 4, which corresponds toMcell = 125.
11Each CUDA kernel call has a launch overhead which can become a significant cost
if a large number of CUDA kernel launches are performed.
12For smaller block sizes, increased memory access costs and other overheads reduce
the throughput.

Figure 2: Schematic of ˜HXb computation over four FE cells dis-
tributed over two MPI tasks using batched xGEMM operations. Mem-
ory layout of Xb where wavefunction values are stored contigu-
ously for each degree of freedomprovides coalescedmemory access
across GPU threads.Mloc denotes number of DoFs owned locally by
a MPI task.

Figure 3: Chebyshev filtering (CF) throughput on a single Tesla
V100 GPU of Summit using 3 MPI tasks (via Multi Process Service)
for various block sizes (Bf ). FP64 peak of Summit’s Tesla V100: 7.3
TFLOPS (cf. Sec. 6.3). Case study: Mg super cell with mono-vacancy
containing 310 electrons. FE Mesh DoFs: 254,097.

significantly higher throughput demonstrated in this work is attrib-
uted to the aforementioned optimizations realized by utilizing the
FE cell structure, which are not accessible in a FD discretization.

5.4 Mixed precision computation in CholGS
and RR

Mixed precision computing strategies are being increasingly used
in many scientific computing areas to accelerate performance on
modern computing architectures due to significant reductions in
computational cost, data movement costs and memory size. How-
ever, there has only been a limited exploration of mixed precision
ideas in DFT solvers [35]. Furthermore, mixed precision algorithms
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have not been explored in the context of the ChFSI procedure, where
the subspace spanned by the Chebyshev filtered vectors ˜Ψ adap-
tively approaches the eigensubspace corresponding to the lowest N
states of H̃. In DFT-FE [14], we have exploited this behaviour of the
ChFSI procedure to develop and validate mixed precision strategies
for both CholGS (cf. Algorithm 3) and RR (cf. Algorithm 4) steps.
This renders a majority (∼ 85%) of the total FLOP count in the ChFSI
procedure being performed in FP32 for the large-scale performance
demonstrations in Sec. 7, while the remaining are performed in
FP64. The above mixed precision algorithms are designed such that
the contribution of the FP32 computations to the electron-density tend
to zero as the SCF approaches convergence, and thereby the ground-
state solution (energy and forces) retains FP64 accuracy. Further, we
are able to achieve robust SCF convergence, with no change in the
number of SCF iterations [14]. In Table 1, using Summit GPU nodes,
we demonstrate mixed-precision performance improvements of
∼ 2× in the O(MN 2) scaling steps of CholGS and RR. We note that
the use of FP32 in network communication (all-to-all communica-
tion of N 2 entries via MPI_Allreduce) is crucial to realizing this
enhanced performance. We remark that similar 2×mixed-precision
speedups have been realized in DFT-FE on NERSC’s13 Cori-KNL
CPU nodes [14].

Overall, as demonstrated in Table 2, all the innovations discussed
above have led to substantial GPU acceleration, with overall SCF
iteration (including all steps) speedups of 19.6× on Summit nodes.

Algorithm 3 Mixed precision algorithm for CholGS.
DP{} denotes FP64 computing, and SP{} denotes FP32 computing.

1: [CholGS-S-MP] Compute overlap matrix in mixed precision:

S = DP {Sd } + SP {Sod }

Sd and Sod are matrices containing the diagonal and off-diagonal entries
of S, respectively.

2: Perform CholGS-CI in double precision.

3: [CholGS-O-MP] Construct orthonormal basis in mixed precision:

˜Ψ
o
= DP

{
˜ΨL−1d

†
}
+ SP

{
˜ΨL−1†od

}
L−1d

† and L−1od
† are matrices containing the diagonal and off-diagonal

entries of L−1† respectively.

6 HOW PERFORMANCEWAS MEASURED.
6.1 Systems and Environment
All simulations reported in this work using hybrid CPU-GPU ar-
chitecture were executed on the Summit supercomputer, whereas
the simulations using CPUs were conducted on the Theta and Cori
supercomputers.

Summit is currently the fastest supercomputer in the world,
with 200.79 PFLOPS FP64 peak. Summit comprises of 4,608 IBM
Power System AC922 nodes with two IBM POWER9 processors (42
physical cores) and six NVIDIA Volta V100 GPUs in each node. Each
node contains 512 GB of DDR4 memory for use by the POWER9

13National Energy Research Scientific Computing Center

Algorithm 4 Mixed precision algorithm for RR.
DP{} denotes FP64 computing, and SP{} denotes FP32 computing.

1: [RR-P-MP] Compute projected Hamiltonian in mixed precision:[
Ĥoc−oc Ĥoc−fr

Ĥfr−oc Ĥfr−fr

]
=


SP

{
˜Ψ
o†
oc H̃˜Ψ

o
oc

}
SP

{
˜Ψ
o†
oc H̃˜Ψ

o
fr

}
SP

{
˜Ψ
o†
fr H̃˜Ψ

o
oc

}
DP

{
˜Ψ
o†
fr H̃˜Ψ

o
fr

} 
Sub-matrices Ĥoc−oc, Ĥoc−fr, Ĥfr−oc, and Ĥfr−fr have sizes Noc × Noc,
Noc×Nfr,Nfr×Noc, andNfr×Nfr, respectively, withNoc+Nfr = N .Noc
denotes the number of eigenstates with orbital occupancy fi = 1, and
Nfr denotes remaining fractionally occupied or unoccupied eigenstates.
Nfr is (10 − 15)% of N for metallic systems. We note that, as the SCF
approaches convergence, the error in electron-density introduced due
to FP32 computation of Ĥoc−oc tends to zero [14].

2: Perform RR-D in double precision.

3: [RR-SR-MP] Perform subspace rotation step in mixed precision:

˜Ψ
R
= DP

[
˜Ψ
o
Qd

]
+ SP

[
˜Ψ
o
Qod

]
Qd and Qod are matrices containing the diagonal and off-diagonal
entries of Q respectively.

Table 1: Performance improvement due to mixed precision com-
putation in CholGS-S and RR-P. Similar speedups are achieved for
CholGS-O and RR-SR. Case study: 61,640 electrons Mg dislocation
system using 1,300 Summit nodes (FP64 peak: 56.65 PFLOPS).

Step Wall-time Flop count PFLOPS
(sec) (PFLOP) (% of FP64 peak)

CholGS-S 13.3 224.1 16.8 (29.7%)
RR-P 16.2 228.7 14.1 (24.9%)

(a) Double precision.

Step Wall-time Flop count PFLOPS
(sec) (PFLOP) (% of FP64 peak)

CholGS-S-MP 7.5 224.1 29.9 (52.8%)
RR-P-MP 9.5 228.7 24.1 (42.5%)

(b) Mixed precision.

Table 2: GPU speedup of single SCF iteration step with respect
to CPU on Summit nodes. Case study: 18,480 electrons Mg disloca-
tion system using 140 nodes. CPU simulation used 40 MPI tasks per
node, with each task bound to 1 CPU core (total 42 cores in each
node). CPU linear algebra performed using IBM ESSL. GPU simula-
tion used 18 MPI tasks across 6 GPUs (via MPS) on each node.

Step Wall-time Wall-time Speedup
CPU (sec) GPU (sec)

Single SCF Total 844.8 43.1 19.6×
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processors and 16 GB of HBM2 for each V100 GPU. Summit nodes
are connected to a dual-rail EDR InfiniBand network providing a
node injection bandwidth of 23 GB/s. On Summit, we have compiled
DFT-FE using NVIDIA CUDA/10.1.105, GCC/6.4.0, IBM Spectrum-
MPI/10.3.0.0, and IBM ESSL/6.1.0.

Theta comprises of 4,392 compute nodes with 11.69 PFLOPS peak.
Each compute node has: single 1.3 GHz Intel Xeon Phi 7230 SKU
chip with 64 cores, 16 GB MCDRAM and 192 GB DDR4 memory.
Theta uses Dragonfly topology interconnect with bisection band-
width of 7.2 TB/sec. Cori, the second CPU based supercomputer
we have used, contains 9,688 compute nodes with 29.5 PFLOPS
peak. Each compute node has: single-socket 1.4 GHz Intel Xeon
Phi 7250 processor with 68 cores, 16 GB MCDRAM and 96 GB
DDR4 memory. Cori uses a Cray Aries with Dragonfly topology for
inter-node communication with 45.0 TB/s global peak bidirectional
bandwidth. On Theta and Cori, we have compiled DFT-FE using
Intel/18 compiler, Cray-MPICH, and Intel MKL.

6.2 What Applications were used to Measure
Performance

In a recent work on the effect of alloying elements on ductility in
Magnesium (Mg) [18], it was shown that small energy difference
between pyramidal I and II screw dislocations can be tuned to signif-
icantly improve the ductility of Mg. In order to use DFT calculations
to guide the alloy design, it is imperative to compute the energy
difference between pyramidal I and II screw dislocations (∆EI−II)
to an accuracy that is better than 10−4 Ha/Å [18]. Achieving this
requires employing a systematically convergent basis, as well as the
capability to handle large system sizes involving many thousands
of atoms to compute the energetics of dislocations accurately. Such
large-scale and accurate DFT calculations on metallic systems are
currently not feasible using state-of-the-art DFT codes. Thus, in this
work, we choose an isolated pyramidal II screw dislocation in Mg,
with system sizes ranging up to 105,080 electrons, as the primary
application problem on which we demonstrate the performance of
DFT-FE in Sec. 7. We consider three different system sizes: pyrIIS-
crewA with 18,480 electrons (1,848 atoms), pyrIIScrewB with 61,640
electrons (6,164 atoms), and pyrIIScrewC with 105,080 electrons
(10,508 atoms). Additionally, we have also considered pyramidal I
and II screw dislocations on smaller computational domains with
less than 1,000 atoms, where we conducted a convergence study
with respect to FE discretization to determine the discretization
parameters to achieve the targeted accuracy14 of better than 10−4
Ha/Å in ∆EI−II. These discretization parameters have been used for
pyrIIScrewA, pyrIIScrewB and pyrIIScrewC simulations.

Further, we consider othermetallic benchmark systems involving
HCP Mg periodic supercells with a vacancy, ranging from 2,550
to 39,990 electrons, to assess the scalability and time to solution
afforded by DFT-FE in comparison to state-of-the-art DFT codes.
The discretization parameters in DFT-FE, QE, and QBox for the above
benchmark systems are chosen to be commensurate with chemical
accuracy (discretization errors of ∼ 10−4 Ha and ∼ 10−4 Ha/Bohr
in energy per atom and ionic forces, respectively).

14Discretization parameters can also be chosen to achieve tighter accuracy of 5× 10−5
Ha/Å or better in ∆EI−II .

6.3 Measurement Methodology
Performance of DFT-FE is measured by using the large-scale metal-
lic systems discussed in Sec. 6.2. Comparison of DFT-FE is carried
out with state-of-the-art PW DFT codes like QBox v1.66.2 [11] and
QUANTUM ESPRESSO v6.3 [12] (QE) using some of the aforementioned
materials systems. In the comparison of DFT-FEwith QE, we use the
stable single SCF iteration time15 as a metric.We note that, although
different solution methodologies are employed in DFT-FE (ChFSI)
and QE (Davidson solver), we use the same electron-density mixing
schemes and other appropriate parameters in both these codes that
results in a similar number of SCF iterations. We have verified this
on smaller benchmark systems by allowing the ground-state energy
to converge to 10−8 Ha/atom between successive SCF iterations.
Thus, the stable single SCF iteration time between DFT-FE and QE
serves as an equivalent relative performance metric, and avoids the
use of significant computational resources for large system sizes
given the limited parallel scaling of QE. In the case of QBox, we
conduct a comparative study by considering the full ground-state
solution time16, including initialization costs, for one representa-
tive benchmark materials system to achieve the same ground-state
energy convergence criterion as above.

For DFT-FE simulations, we used 3 MPI tasks per GPU (using
Multi-Process Service) or equivalently 18 MPI tasks per node on
Summit, 32 MPI tasks per node and 4 OpenMP threads per MPI
task on Theta, and 32 MPI tasks per node and 2 OpenMP threads
per MPI task on Cori. QE simulations were run on Cori using 16
MPI tasks per node and 4 OpenMP threads per MPI task for smaller
problem sizes (< 10, 000 electrons), and 8 MPI tasks per node and 4
OpenMP threads per MPI task for larger problem sizes where more
memory per MPI task is required. QBox simulations were run on
Theta with 32 MPI tasks per node and 4 OpenMP threads per MPI
task.

Time measurements for the various computational steps and
the total run-times in DFT-FE were performed using MPI_Wtime
for CPU only simulations, and a combination of MPI_Wtime and
cudaDeviceSynchronize for hybrid CPU-GPU simulations on Sum-
mit. FLOP counts were measured for a single SCF iteration step in
the hybrid CPU-GPU simulations using nvprof with the DFT-FE
solver mode set to double precision17, while timings were measured
with the solver mode set to mixed precision. We note that FLOP
count measurements using nvprof are very slow (many hours in
wall time) when measured for all the MPI tasks in large scale runs
(> 500 Summit nodes). To circumvent this, we measured the FLOP
counts at two different MPI tasks, and used the average FLOP count
per MPI task multiplied by total number of MPI tasks to obtain the
total FLOP count. The total FLOP count obtained in this manner is
very close (∼ 3% error18) to explicitly measuring and adding FLOP
counts for all MPI tasks, as the load balancing in DFT-FE ensures
almost equal number of FE DoFs in each MPI task. Finally, we re-
mark that the theoretical peak FP64 FLOPS, for a given number of

15It takes a few initial SCF iterations for the times to become stable in both DFT-FE
and QE.
16We did not achieve a stable single SCF time in the case of QBox.
17FLOP counts have been measured in uniform precision as per ACM Gordon Bell
guidelines.
18We verified this on a small system with 254,097 DoFs and using 6 MPI tasks, where
we find the difference in the FLOP count between the two approaches is 3.3%.
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Summit nodes, are obtained based on scaling with respect to the
reported 200.79 DP-PFLOPS19 for 4,608 nodes.

7 PERFORMANCE RESULTS
In this section, we demonstrate the parallel scaling performance,
time-to-solution, and sustained performance of DFT-FE on large-
scale metallic systems involving accurate pseudopotential DFT
calculations reaching 105,800 electrons. GGA [36] exchange cor-
relation functional of the PBE type [37] and norm-conserving
ONCV [38] pseudopotentials from the SG15 database [39] are em-
ployed in all the DFT simulations presented here.

7.1 Scalability & Time-to-Solution
We first examine the strong parallel scalability of DFT-FE on HCP
Mg supercell with a vacancy containing 8,630 electrons (863 atoms),
a representative medium-sized metallic system employing peri-
odic boundary conditions. The scaling study conducted on Theta
is shown in Fig. 4, which employed domain decomposition paral-
lelism till 8,192 MPI tasks (corresponding to 2,852 DoFs per MPI
task). To extend the scalability beyond 8,192 MPI tasks, parallelism
across wavefunctions [14] is employed in conjunction with domain
decomposition. A relative speedup of 26.7× is obtained reducing
the wall-time per SCF iteration from 1,175 sec on 512 MPI tasks
to around 44 sec on 32,768 MPI tasks. To further highlight the
implications of the scaling performance of DFT-FE, we conducted
a comparative study with QBox [11], a state-of-the-art PW code
and a previous Gordon Bell prize winner [21]. To this end, we first
obtained the minimum wall-time/SCF iteration by conducting a
scaling study on QBox, which was attained at 8,192 MPI tasks on
256 Theta nodes. Notably, DFT-FE outperforms QBox by 4.6×, when
solved to chemical accuracy, as shown in Table 3. This is a result of
the low communication costs afforded by locality of FE basis, and
the algorithmic and implementation innovations discussed in Sec. 5.
To further corroborate the computational efficiency afforded by
DFT-FE in comparison to state-of-the-art PW codes, we conducted
a comparative study of minimum wall-times per SCF iteration ob-
tained using DFT-FE and QE on increasing system sizes of Mg HCP
supercells with a vacancy. As shown in Fig. 5, DFT-FE significantly
outperforms QE, and, notably, attains 9× speedup for the system
containing 20,470 electrons.

Table 3:Comparison of total run time of DFT-FE ground-state calcu-
lation with QBox on Theta. Case study: Mg supercell with a vacancy
(8,630 electrons).

Code Wall-time (sec) MPI tasks Energy/atom (Ha)
Qbox 6480 8192 -54.32655
DFT-FE 1403 32768 -54.32650

We next consider our primary application problem, the pyrami-
dal II screw dislocation in Mg. The strong scaling study conducted
on pyrIIScrewA containing 18,480 electrons (1,848 Mg atoms) is
shown in Fig. 6 for Theta and Fig. 7 for Summit. We obtain 82%
efficiency on Theta at 16,384 MPI tasks with 3,385 DoFs per task.

19https://www.top500.org/list/2019/06/
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Figure 4: Strong scaling of wall-time per SCF iteration on Theta
using DFT-FE. Case study: Mg HCP supercell with 8,630 electrons
(863 atoms) discretized using 23.36 million DoFs (FE basis) using FE
polynomial degree 4.
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Figure 5: Comparison of minimumwall-time per SCF iteration be-
tween DFT-FE and QE on Cori KNL nodes. Case study: Mg supercells
with increasing system size.

This corresponds to a relative speedup of 14.5×, thus, reducing the
wall-time per SCF iteration from 1,511 sec on 2,048 MPI tasks to
104 sec on 65,536 MPI tasks20. On Summit GPU nodes, we obtain
96% efficiency at 280 nodes (5,040 MPI tasks) with 11,000 DoFs per
task. The wall-time per SCF iteration reduced from 97.6 sec on
1,260 MPI tasks to around 13.99 sec on 20,160 MPI tasks. We remark
that DFT-FE’s scaling range on Summit is smaller compared to that
obtained using Theta due to the high GPU compute speedups of
DFT-FE (cf. Table 2 for GPU speedups obtained on the same system).

Subsequently, we examine the weak scaling performance of
DFT-FE on Summit nodes. DFT-FE simulations have been set up
such that the memory associated with the wavefunctions per MPI

20This run used 2,048 nodes, which corresponds to half the total number of Theta
nodes. Scalability of DFT-FE has also been demonstrated on 192,000 MPI tasks using
∼60% of Cori-KNL nodes [14].
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Figure 6: Strong scaling of wall-time per SCF iteration on Theta us-
ing DFT-FE. Case study: Mg screw dislocation system (pyrIIScrewA)
with 18,480 electrons (1,848 atoms) discretized with 55.11 million
DoFs.
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Figure 7: Strong scaling of wall-time per SCF iteration on Summit
GPU nodes using DFT-FE. Case study: Mg dislocation system (pyrIIS-
crewA) with 18,480 electrons (1,848 atoms). Each GPU is associated
with 3 MPI tasks via MPS.

task (O(MlocN )), which constitutes the dominant memory foot-
print, remains a constant across all benchmark systems. In DFT-FE,
the computational complexity of CF scales as O(MlocN ) per MPI
task, while the scaling of CholGS and RR is O(MlocN

2). The depar-
ture from ideal weak scaling efficiency in Fig. 8 is expected because
of the O(MlocN

2) complexity becoming dominant with increase in
the number of electrons.

7.2 Large-scale dislocation systems:
Time-to-Solution & Sustained Performance

We now demonstrate the performance of DFT-FE on large-scale Mg
dislocation systems: pyrIIScrewB with 61,640 electrons (6,164 Mg
atoms), and pyrIIScrewC with 105,080 electrons (10,508 Mg atoms)
using Summit GPU nodes. First, in Table 4, we report the time-to-
solution and performance of the pyrIIScrewB system, which has
been discretized with 179.03 million DoFs. This simulation achieved
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Figure 8: Weak scaling efficiency of wall-time per SCF iteration
on Summit (MPI tasks used are 54, 180, 576, 3294, 12744 and 38250).
Case study: Mg supercells with increasing system size.

16.7 PFLOPS (29.5% efficiency) sustained performance in the ground-
state calculation involving 56 SCF iterations21, and almost similar
sustained performance of 14.7 PFLOPS (26.0% efficiency) over the
entire run time of the program including initialization costs22. In
Table 4, we also measured the performance of the various compu-
tational steps in a SCF iteration, demonstrating the significantly
high efficiencies achieved in the range of 42.5% – 119.5% for the
O(MN 2) scaling mixed-precision compute steps, which constitute
82.4% of the total FLOP count. We note that the FLOP counts of
CholGS-S-MP, CholGS-O-MP and RR-P-MP are smaller compared
to RR-SR-MP, which is attributed to the optimizations we have
performed by exploiting the Hermiticity and triangular nature of
the matrices involved [14]. Figure 9 shows the computed electron
density contours for the pyrIIScrewB dislocation system.

Finally, in Table 5, we report the wall-time and sustained perfor-
mance of a single SCF iteration step23 of the pyrIIScrewC system,
the largest system size considered in this work with 105,080 elec-
trons (10,508 Mg atoms) and discretized with 304.92 million DoFs
(17.69 trillion wavefunction values). We note that the SCF wall-time
in Table 5 is obtained by taking the average over 10 calls to the
ChFSI procedure (cf. Algorithm 2), thus demonstrating sustainabil-
ity of the performance. This simulation achieves two significant
landmarks. First, the single SCF wall-time of 142.7 sec demonstrates
that fast large-scale and chemically accurate Kohn-Sham DFT sim-
ulations of metallic systems reaching ∼ 100, 000 electrons are now
possible. Second, we achieve an unprecedented sustained perfor-
mance of 46 PFLOPS (27.8% efficiency) utilizing 3,800 nodes out of
total 4,608 nodes on Summit, which is 14.9× higher than the current
DFT record of 3.08 DP-PFLOPS [1].

21Multiple calls to the ChFSI procedure (cf. Algorithm 2) are performed in the initial
few SCFs. Hence total FLOP count is calculated by multiplying the single SCF iteration
step FLOP count with total number of ChFSI calls.
22The initialization costs will be reduced in half after a known issue in deal.II library
(https://github.com/dealii/dealii/issues/7053) is resolved in the short-term. Our current
temporary fix involves an expensive serial operation.
23Due to our limited resource allocation on Summit, we could not perform a full
ground-state calculation on the pyrIIScrewC system (105,080 electrons). However as
demonstrated on the pyrIIScrewB system (61,640 electrons) in Table 4 the performance
of a single SCF iteration step is very close (within 12%) to that of the full run-time.
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Table 4: Time-to-solution and performance of pyrIIScrewB (61,640
electrons) system. Simulation performed using 1,300 Summit nodes
(FP64 peak: 56.65 PFLOPS).

Procedure Wall-time FLOP count PFLOPS
(sec) (PFLOP) (% of FP64 peak)

Initialization 981 - -
Ground-state 7377 123174 16.7 (29.5%)

Total 8358 123174 14.7 (26.0%)

(a) Total program run time and sustained performance. Breakdown
of run time into initialization and ground-state calculation costs.

Step Wall-time FLOP count PFLOPS
(sec) (PFLOP) (% of FP64 peak)

CF 36.3 212.6 5.9 (10.3%)
CholGS-S-MP 7.5 224.1 29.9 (52.8%)
CholGS-CI 1.6 - -

CholGS-O-MP 5.6 228.9 40.9 (72.2%)
RR-P-MP 9.5 228.7 24.1 (42.5%)
RR-D 7.0 - -

RR-SR-MP 6.6 446.6 67.7 (119.5%)
DC 0.9 27.7 30.8 (54.3%)
EP 4.6 - -

Others 3.7 - -

Single SCF Total 83.3 1368.6 16.4 (29.0%)

(b) Breakdown of performance of single SCF iteration. FLOP count
for operations on CPU (CholGS-CI, RR-D and EP), which constitute
a minor portion of the total FLOP count are not measured, though
their wall-times are considered in the single SCF total time.

Figure 9: Electron density contour of pyramidal II screw disloca-
tion system in Mg with 61,640 electrons (6,164 Mg atoms).

Table 5: Wall-time and sustained performance of a single SCF it-
eration step of pyrIIScrewC (105,080 electrons) system. Simulation
performed using 3,800 Summit nodes (FP64 peak: 165.58 PFLOPS).

Step Wall-time FLOP count PFLOPS
(sec) (PFLOP) (% of FP64 peak)

Single SCF 142.7 6,563.7 46 (27.8%)

(a) Performance of single SCF iteration.

Step Wall-time (sec)
CF 46.1

Chol-GS 36.9
RR 54.0

DC+EP+Others 5.7

(b) Breakdown of single SCF iteration wall-time into major steps.

8 IMPLICATIONS
Applications: The recent disruptive advancements in computing
architectures require a paradigm shift in the design and implementa-
tion of computational algorithms to exploit these developments and
enable accurate DFT calculations at larger length- and time-scales
than possible heretofore. This work constitutes an important step
in this direction. In particular, the advances reported here, make
possible, for the first time, accurate DFT calculations on metallic
systems with tens of thousands of atoms computationally feasible
and practical. This opens the possibility of tackling a wide range
of scientifically and technologically important problems that have
been out of reach. For instance, accurate ab initio studies on dis-
location energetics now becomes a reality, which can guide and
accelerate the discovery of new light weight structural alloys. To
elaborate, the electronic ground-state of a dislocation system con-
taining ∼ 5,000 – 10,000 atoms (∼ 50,000 – 100,000 electrons) can be
computed in ∼ 2 – 4 hrs, which is unprecedented—current state-of-
the-art codes will require a few days to a week. Other application
areas that benefit from the ability to handle large-scale metallic
systems in an efficient manner, to name a few, include: design and
discovery of new catalytic materials, studies on high entropy al-
loys, novel energy storage materials, organometallic complexes in
biomolecular electronics. Furthermore, the significant improvement
in the time-to-solution will also enable large-scale ab initio MD
simulations for longer time-scales than possible thus far, which
will be instrumental in studying transport (electronic and ionic),
reaction kinetics, kinetics of phase transitions etc., over a wide
range of materials systems.

Future architectures: The upcoming exascale machines are
expected to have significantly more compute capability per node,
in addition to having more compute nodes, compared to current
pre-exascale machines. However, the data movement and memory
bandwidths are not expected to increase significantly. In this regard,
the innovations realized in DFT-FE, which significantly improved
arithmetic intensity and reduced data movement costs, make it well-
placed to leverage future exascale machines. Further, DFT-FE will
also be able to take advantage of larger number of compute nodes
on exascale machines to extend the parallel scalability, through the
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use of parallelization across wavefunctions (band parallelization)24,
to enable simulations of even larger metallic systems. Implemen-
tation of enriched finite-element basis [40] in DFT-FE, which has
the potential to substantially reduce DoFs for pseudopotential DFT
calculations, while maintaining the same accuracy and parallel scal-
ing, can further expand the accessible system sizes to millions of
electrons on exascale machines. At such extreme sizes, building on
the developments reported here, further algorithmic advancements
such as development of accurate “divide and conquer” approaches
for generic materials systems have the potential to push DFT-FE’s
performance into the exaFLOPS range.
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